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assume that gr (t) < G,, h, rt) \< Ei,), and 

Theorems 1 - 3 will hold for this case if conditions o are replaced by conditions or., 
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We prove a generalization of the Kelvin-Chetaev theorem. We examine certain 

aspects of the stabilization of unstable potential systems by gyroscopic and non- 

conservative forces [ 11, 

1. We consider the systems (D, P are constant symmetric ( iz x n )-matrices) 

x’* + Ds’ + FLZ = 0 (1.1) 

x" + Dx‘ + Fx = X (z, 2') 0.2) 

2 = COl(X~, . . ., xn), x (x, x') -= col(X, (x, x’), . . . ) x, (5, ;c')), X(0,0)=0 

(the functions Xi Is, x') contain x$, x~’ to powers not less than second). 
A result which we can state as the following theorem was proved in [Z]. 
The Kelvin-Chetaev theorem. If matrix D is positive definite and 

among the eigenvalues of matrix F there is at least one negative, then systems (1.1) 
and (1.2) are unstable. 

A result which can be looked upon as a generalization of the Kelvin-Chetaev theorem 
was proved in p]. 

The theorem from [3], If matrix L) is positive definite and IF 1 # 0, then 
the number of roots with a positive real part of the characteristic equation 

/Bh2+03L+F/=0 0.3) 
equals the number of negative eigenvalues of matrix F. 
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Using the substitution 5 = yeEt suggested in [2], where E is a suitably chosen con- 
stant, we can getrid of the condition ] F 1 F 0 and prove that with a positive-definite 
matrix D the number of roots of characteristic equation (1.3) with a positive real part 

is not less than the number of negative eigenvalues of matrix F. But it turns out that 

there exists a simple proof of the following stronger statement. 

Theorem 1.1. The number of positive roots of characterisitic equation (1.3) is 
not less than the number of negative eigenvalues of matrix F. 

Proof. We consider the symmetric matrix 

3 (h) = Eii2 + ilA -k F 

where a is a real parameter. The determinant of this matrix equals the product of ic 

eigenvalues 1 B(h)J=b&)*b&)... b,(k) 

For a sufficiently large h > 0 the matrix B (A) is positive definite and its eigenva- 

lues are greater than zero. If among the eigenvalues F b, (0), b, (O),. . . , b, (0) 
of matrix F there are negative ones, for example, bk (0) < 0, then by virtue of their 

continuity with respect to h there exists h0 > 0 such that bk (h,) == 0, i.e. charac- 
teristic equation (1.3) has a positive root LO. The completion of the proof is obvious. 

Note. It czm be proved analogously that the number of negative roots of character- 
istic equation (1.3) is not less than the number of negative eigenvalues of matrix 1”. 

Corollaries. 1. If matrix F is negative definite, then the characterisitc equa- 

tion (1.3) has n positive roots and n negative roots. 
2. If among tne eigenvalues of matrix F there is at least one negative, then systems 

(1.1) and (1.2) are unstable. 

2. let us consider the system 

x’* + HGx’ _i- Fx = 0 (2.1) 

where G is a constant skew-symmetric ( y1 x n )-matrix characterizing gyroscopic 

forces, H is a real parameter. Systems of form (2.1) have been exhaustively treated 

in t43. 
Theorem 2.1. If matrix F is negative definite and the determinant 1 G 1 + 0, 

then system (2,l) is stable for H > H,, > 0, where Ho is defined by the equality 

H 

0 (2.2) 

in which fi and g, are the largest eigenvalues of matrices F and G’FFG, fa and gs 
are the smallest eigenvalues of matrices F and G’G. 

Proof. System (2.1) has the energy integral 

V, = t/s (X”EX’ -I- X’FX) 

It is easily verified that it has a second quadratic integral 

V, = (HGx’ + Fx)’ (HGx’ _t Fx) -;- x”Fc~’ 

We set up the linear sheaf of these integrals 

v := 2 (Hif, - II) ‘V, + v, 
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which can be written in the form 

V = x*’ [H2G’G - HG’FFG + (H/f, - fJ E + Fl x’ + 
x’ t(Hl fx - fJ F - HE + FFI x + H (x + FGx*)’ (x + FGx’) 

It can be shown that the quadratic form V is positive definite for H > Ho . Then, 

system (2.1) is stable by virtue of Liapunov stability theorem. 
If matrix F is negative definite and all its eigenvalues are equal to each other, then 

system (2.1) is unstable when 1 G 1 = 0. However, in the general case stable systems 
(2.1) exist in which matrix F is negative definite and 1 G 1 = 0. The following exam- 

ple proves this. Let us consider system (2.1) in which 

0 i 13 01 10-s 0 0 0 
--I 0 0 20 !! () 10-6 0 0 

ff=i, c== _.I() 0 0 100 ’ 
0 - 10 - 100 0 I I 

--F=i 0 () 
103 0 

0 0 0 103 

Here matrix F is negative definite, 1 G 1 = 0. The characteristic equation of this sys- 

tern has distinct pure imaginary roots, i. e, the system is stable. Note that in thisexam- 

ple the system is unstable for H = o , becomes stable as H increases (H I= 11, and 

becomes and remains unstable under a subsequent increase in H . 

3. We consider the systems (P is a constant skew-symmetric ( IZ x n)-matrix cbar- 
acterizing nonoperative forces) 

x” -t Gx’ + Fx -/- Px == 0. (3.1) 

5” + Gx’ + Fx + Px = X (x, x:‘) (3.2) 

About systems (3.1) and (3.2) we know : 
1) system (3.1) is not asymptotically stable [4] ; 
2) if matrix F is negative definite, then systems (3.1) and (3.2) are unstable for 

odd n [4]; 

3) if matrix F is negative definite and P =: aG (a > 0), then systems (3.1) 
and (3.2) are unstable [5]. 

Note. The restriction a > 0 is unessential and statement (3) is valid for any con- 

stant a # 0. 
Theorem 3.1. If F = kE, where k is an arbitrary constant, and matrices G 

and P are commutative, then system (3.1) is unstable, 
Theorem 3.2, If the hypotheses of Theorem 3.1 are fulfilled and 1 P / # 0, 

then system (3.2) is also unstable. 

The proofs of Theorems 3.1 and 3.2 agree with the proofs of Theorems 4 and 5 of [;I. 
Theorem 3.3. Systems (3.1) and (3.2) are unstable if 

,X giiPij + O (3*3) 
i, i 

where gij, JJij are the elements of matrices G, pa 
Pro o f s Consider the characteristic equation 

1 Eh2 + G3L + F -1 P 1 = 3L2* -+ u,%~~-~ + . . . + usn = 0 

It can be shown that 
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a, = 0, '3 = 2 gijPij 
6 j 

If condition (3.3) is fulfilled, then aa # 0, which implies that there is at least one root 
with a nonzero real part in the characteristic equation. But then from the condition 

a1 = 0 it follows that the characteristic equation has at least one root with a positive 
real part. The theorem is proved. 

Corollaries. 1. If G = aP, then systems (3.1) and (3.2) are unstable. 
2. Systems (3.1) and (3.2) are unstable for n = 2 . 
Examples. I. Consider system (3.1) in which 

‘10-6 00 1 0 0 0 0 0 0 --c1 
6 0 ‘=O 0 06,-F=($(::/;, 00 00--a 

p=oft 0 
0 
0 

0 0 -6 0 0 0 0 2 r 0 0 0 

where 01 = 0.01. We can show that the characteristic equationofthis system has distinct 
pure imaginary roots. Thus, this system is stable. Here matrix F is negative definite, 
matrices G and P are commutative, 1 P 1 # 0, but Theorems 3.1 and 3.2 are inope- 
rative since F =,f= kE. 

2. As already noted, it is impossible to stabilize the system 

2” + p 5 = 6 (3.4) 

with F = aE (a < 0) by gyroscopic forces with determinant 1 G ] = 0. In this case it is 
impossible to stabilize it with only nonconservative forces. However, the simultaneo~ 
use of gyroscopic and nonconservative forces enables us to achieve the stabilization even 
under the condition 1 G I = 0. In fact, consider system (3.1) in which 

0 1 0 0 0 0 0 0 

-1 0 3 I 0 0 C) 0 
F==aE, G= 0 -3 0 0 ’ p= 0 0 0 6 

0 -10 0 n 0 -6 0 

where a = -0.01. We can show that the characterisitc equation of this system has dis- 
tinct pure imaginary roots, i. e. the system is stable 

4 _ The problem of stabilizing unstable potential systems (3.4) by nonoperative 
forces was posed in [6]. It was also given the solution for cases n = 2 and 3. Below we 
solve this problem in the general case. 

Theorem 4.1. A real matrix R can be reduced by an orthogonal transformation 
to a form with distinct positive diagonal elements if and only if 

SP R>(-’ (4.1) 

R+R'J;c& (4.2) 

Proof. Since the trace of a matrix is an invariant of an orthogonal transformation, 
the necessity of condition (4.1) is obvious, We write matrix Ras a sum of its symmetric 
and skew-symmetric parts 

R = 'iz (R + R') + 'iz (R - R') (4 3) 

Symmetry and skew-symmetry are preserved under an orthogonal transformation ;there- 
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fore, from (4,3) follow the necessity of condition f4.2) and the fact that without loss of 
generality we can assume matrix R as a diagonal one. let l? = diq (rI, . . ., f,). 
We prove the sufficiency of conditions (4.1) and (4.2) by induction in n. 

For n = 2 it suffices to consider the case f1 > 0, r2 < 0. To matrix R we apply 
an orthogonal transformation with matrix A : ARA’ = S. We can show that the for- 
mulas 

E - 7.2 
all2 = a? = G-_ , aI2 

2_ 
- %Tl 

:!_I-1-E 
-- 

?I - r2 

with a sufficiently small E > 0 determine the elements of the matrix A of the ortho- 
gonal ~ansformation reducing matrix R to the reciuired form. 

Suppose that the theorem has been proved for all n < m. Let us also prove its validity 
for n, -= m -i_ 1. Without loss of generality we assume that rr > r2 >. . . >rm+l. 

Case r,+l > 0. 
1) If r-17 + i+*+lt then using an orthogonal ~ansfor~tion with matrix 

A-_ 

1 o...o 
0 

Am 

0 

where Am is an orthogonal ( m x ~&)-matrix, the matrix R can be reduced by the 
induction assumprion to the form 

I 411 *. * 4172 

Q=A&A"r= : 
0” 
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4nI 

where qrr > 0. and the ( m x m )-matrix Q” has distinct positive diagonal elements. 
2) If J-2 = lem+i, then we make rI and r2 change places and reduce the matrix 

obtained to form (4.5) by the same method. 
Case f*,,+r < 0. We make r2 and r m+i change places anf to the matrix A, ob- 

tained we apply an orthogonal transformation with matrix 

a11 a~12 .._ 0 0 

at1 as2 . . . 0 0 

Al=: 0 0 
. . f . E 

00 , 

(4.6) 

Anal~o~ly to the case ia -= 2 we reduce matix R, to the form 

R, = AIRIA,’ = 

where e > 0 and the ( rn x m)-matrix J?, satisfies conditions (4.1) and (4.2). Mat- 
rix R, can by the inductive assumption be reduced to the form (4.5) by an orthogonal 
tra~formation with a matrix of the form (4.41, 

Thus, under the assumptions made, the matrix .R can always be reduced to the form 
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(4.5) by an orthogonal transformation. Ifthe ‘11~ in (4.5)does not agree with any of there - 
mai~ngdis~in~ diagonal elements, then the theorem is proved, llowever,if qll agrees with 
one of them, then without loss of generality, we can assume that qll # qzz. In this case 
we can show that an or~ogonal ~a~f~mation with a matrix of the form (4.6) exists, 
which reduces matrix Q to the required form, The theorem is completely proved, 

Theorem 4.2. The unstable system (3.4) can be stabilized by nonconservative 
forces if and only if the condition 

spF > 0 (4.7) 
is satisfied. 

Proof. The necessity of condition (4.7) was proved in [6]. If system (3.4) is unsta- 
ble and condition (4.7) is satisfied, the matrix F satisfies the hypotheses of Theorem 
4.1. Therefore, wlthout loss of generality we can assume that matrix F is already re- 
duced to a form with distinct positive diagonal elements. Then we choose the stabilizing 
matrix P in the system 

x’* + FX + Pz = 0 (4.8) 

in the following manner. For i < j we set pi j = f i j and for i > j we set pij r= 
- fij* For such a choice of the skew-symmetric matrix Y the roots of the characteris- 

tic equation of system (4.8) are pure imaginary and distinct, i, e. system (4.8) is stable. 
The theorem is proved. 

Problem 4.1. 

can be stabilized by 
so that the system 

is stable. 

Determine the conditions under which the unstable system 
2” -1 Dz’ c= () (4.9) 

gyroscopic forces, i, e. select a constant skew-symmetric matrix G 

2” + Dx’ f Gx’ ‘- 0 (4.10) 

In [4] it was shown that gyroscopic stabilization of unstable systems (4.9) is impossible 
under the condition spD < 0, 

Theorem 4. 3. If SP D > 0, an unstable system (4.9) can be stabilized by gyro- 

scopic forces. 
This theorem is proved similarly to Theorem 4.2. We note that the condition sp D>$ 

is not necessary for the gyroscopic stabilization of unstable systems (4.9) and even for 
n = 2 stable systems (4.10) exist in which sp fi = 0. 

The author thanks V. V, Rumian~ev for advice and remarks on this paper. 
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